Topic: Further Quadratics

Topic/Skill	Definition/Tips	Example
1. Quadratic	A quadratic expression is of the form	Examples of quadratic expressions:
		x ²
	$ax^2 + bx + c$	$8x^2 - 3x + 7$
	where a, b and c are numbers, $a \neq 0$	Examples of non-quadratic
		expressions: $2w^3 = Fw^2$
		$2x^2 - 5x^2$ $9x - 1$
2. Factorising	When a quadratic expression is in the	$x^{2} + 7x + 10 = (x + 5)(x + 2)$
Ouadratics	form $x^2 + bx + c$ find the two numbers	(because 5 and 2 add to give 7 and
2	that add to give b and multiply to	multiply to give 10)
	give c.	1, 5, 7
		$x^2 + 2x - 8 = (x + 4)(x - 2)$
		(because $+4$ and -2 add to give $+2$
		and multiply to give -8)
3. Difference	An expression of the form $a^2 - b^2$ can	$x^2 - 25 = (x+5)(x-5)$
of Two	be factorised to give $(a + b)(a - b)$	$16x^2 - 81 = (4x + 9)(4x - 9)$
Squares		2, 2, 00
4. Solving	Isolate the x^2 term and square root	$2x^2 = 98$
Quadratics	Dourn sides.	$x^{-} = 49$ $x^{-} + 7$
(ux - b)	and a negative solution	$x = \pm r$
5 Solvina	Factorise and then solve = 0	$x^2 - 3x = 0$
Ouadratics		$\begin{array}{c} x & 3x = 0 \\ x(x - 3) = 0 \end{array}$
$(ax^2 + bx =$		x = 0 or x = 3
0)		
6. Solving	Factorise the quadratic in the usual	Solve $x^2 + 3x - 10 = 0$
Quadratics by	way.	
Factorising	Solve = 0	Factorise: $(x + 5)(x - 2) = 0$
(a = 1)		x = -5 or x = 2
	Make sure the equation = 0 before	
7 Quadratic	A W-chaped' curve called a parabola	y y y = x²-4x-5
7. Quadratic Granh	The equation is of the form	
Graph	$y = ax^2 + bx + c$, where a, b and c are	
	numbers, $a \neq 0$.	-1 5 +
	If $a < 0$, the parabola is upside	
	down.	(2, -9)
8. Roots of a	A root is a solution .	4
Quadratic		
	The roots of a quadratic are the <i>x</i> -	2
	intercepts of the quadratic graph.	
		$\begin{bmatrix} -2 \\ -1 \\ 2 \end{bmatrix}$ 1 2 3 4

P		
9. Turning	A turning point is the point where a	
Point of a	quadratic turns.	
Quadratic		
-	On a positive parabola , the turning	
	point is called a minimum .	
	On a negative parabola , the turning	
	point is called a maximum .	
10.	When a quadratic is in the form	Eactorise $6x^2 + 5x - 4$
Factorising	$ax^2 + bx + c$	
Quadratics	1 Multiply a by $c = ac$	$1 6 \times -4 = -24$
when $a \neq 1$	2 Find two numbers that add to give b	2. Two numbers that add to give
when $u \neq 1$	and multiply to give ac	± 5 and multiply to give -24 are ± 8
	3 Re-write the quadratic replacing hr	and -3
	with the two numbers you found	$3 6 x^2 + 9 x - 2 x - 4$
	4 Eactorise in pairs – you should get	5. $0x + 0x - 5x - 4$
	the same bracket twice	H. Factorise in pairs. 2n(2n+4) = 1(2n+4)
	E Write your two brackets one will	2x(3x + 4) - 1(3x + 4)
	be the repeated bracket, the other will	5. Allswel = $(3x + 4)(2x - 1)$
	be the repeated blacket, the other will	
	be made of the factors outside each of	
11 Cohing	The two Drackets.	$\mathbf{Cabva} 2 \mathbf{v}^2 + 7 \mathbf{v} + 0$
11. Solving	Factorise the quadratic in the usual	Solve $2x^2 + 7x - 4 = 0$
	Way.	$\mathbf{F}_{\mathbf{r}}$ the size $(2, -4)(-4, 4) = 0$
Factorising	Solve = 0	Factorise: $(2x - 1)(x + 4) = 0$
$(a \neq 1)$	Make sume the equation 0 hofers	$x = \frac{1}{2}$ or $x = -4$
	Make sure the equation = 0 before	2
12	A supportion in the former 2 is in the former	Computed the equate of
12. Completing	A quadratic in the form $x^2 + bx + c$ can	Complete the square of
	be written in the form $(x+p)^2 + q$	$y = x^2 - 6x + 2$
the Square	1 Multiple and of humalists with the second	Answer: $(x - 2)^2 - 2^2 + 2$
(when $a = 1$)	1. Write a set of brackets with x in and	$(x-3)^2 - 3^2 + 2$
	nair the value of <i>b</i> .	$-(m-2)^2$ 7
	2. Square the bracket.	$=(x-3)^{2}-7$
	3. Subtract $\left(\frac{b}{a}\right)^2$ and add c.	The minimum value of this
	4 Simplify the expression	The minimum value of this $(x - 2)^2$
		expression occurs when $(x - 3)^2 =$
	You can use the completing the	0, which occurs when $x = 3$
	square form to help find the	when $x = 3$, $y = 0 - 7 = -7$
	maximum or minimum of quadratic	Minimum a sint (2, 7)
	graph	Minimum point = $(3, -7)$
13	A quadratic in the form $ar^2 + hr + c$	Complete the square of
Completing	can be written in the form $\mathbf{n}(\mathbf{r} + \mathbf{a})^2 \perp$	$4r^2 + 8r - 3$
the Square	r	Answer:
(when $a \neq 1$)		$4[r^2 + 2r] - 3$
$(which u \neq 1)$	Use the same method as above, but	$=4[(x+1)^2-1^2]-3$
	factorise out a at the start	$= 4(x + 1)^2 - 4 - 3$
		$=4(x+1)^2-7$

14. Solving	Complete the square in the usual	Solve $x^2 + 8x + 1 = 0$
Quadratics by	way and use inverse operations to	
Completing	solve.	Answer:
the Square		$(x+4)^2 - 4^2 + 1 = 0$
		$(x+4)^2 - 15 = 0$
		$(x+4)^2 = 15$
		$(x+4) = \pm \sqrt{15}$
		$x = -4 \pm \sqrt{15}$
15. Solving	A quadratic in the form $ax^2 + bx + c =$	Solve $3x^2 + x - 5 = 0$
Quadratics	0 can be solved using the formula:	
using the	$-b+\sqrt{b^2-4ac}$	Answer:
Quadratic	$x = \frac{2a}{2a}$	a = 3, b = 1, c = -5
Formula	Use the formula if the quadratic does	
	not factorise easily.	$-1 \pm \sqrt{1^2 - 4 \times 3 \times -5}$
	,	x =
		$-1 \pm \sqrt{61}$
		$x = \frac{1}{6}$
		x = 1.14 or - 1.47 (2 d. p.)

